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ABSTRACT

BUSH, BRETT ALAN. Analysis of Fuel Consumption for an
Aircraft Deployment with Multiple Aerial Refuelings.
(Under the direction of Thom J. Hodgson.)

The purpose of the research has been to derive an

algorithm that finds optimal aerial refueling segments

(non-instantaneous) for a single aircraft deployment while

also accounting for atmospheric winds. There are two

decision variables: (1) Where to locate the refueling

segments? (2) How much fuel to offload at each refueling

segment? Later in the dissertation, a third decision

variable is explored: How much fuel to load onto the

aerial refueling aircraft?

In previous research, the problem of having a single

aircraft deployment with one instantaneous aerial refueling

has been explored and solved. This paper piggybacks on

that research and extends it. The first step (Problem P1)

is deriving an algorithm that finds the optimal aerial

refueling points for a single aircraft deployment with

multiple instantaneous aerial refuelings. In the next step

(Problem P2), one assumes aerial refueling is not

instantaneous (in an effort to make the problem and

solution more realistic), but requires some time frame

depending on an offload rate. In problem (P2), optimal



refueling segments are found (versus optimal refueling

points). In the last problem (P3), one looks at a very

similar algorithm that factors the winds aloft into the

minimization algorithm. Finally, this paper looks at three

distinct deployment scenarios with two aerial refuelings

required. All of the scenarios were first planned by the

U.S. Air Force and the results given to the author.

Potential fuel and cost savings associated with using the

aforementioned algorithms instead of current methods are

then analyzed.
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CHAPTER I

INTRODUCTION

Problem Description

In today's world, the ability to deploy aircraft,

supplies, and manpower is an essential tenet to military

power. Often, the deployment distance will be outside the

range of the aircraft. This is usually overcome through the

use of aerial refueling. Sometimes, more than one refueling

will be required. This dissertation deals almost exclusively

with that possibility (although the algorithm also works for

one refueling).

The objective is to determine the optimal points on the

earth in which to refuel during a deployment from an origin

base to a destination with more than one refueling required.

This will also produce another decision variable: the amount

of fuel to offload at each refueling point. We will look at

three special cases of this problem.

Problem (P1) : There are N refuelings required for one

aircraft to go from origin base, A, to destination base, B and

the refueling points are considered to be instantaneous. The



N refuelings will occur with one tanker from each of N

refueling bases. A visual interpretation of this problem is

presented in figure 1-1.

Problem (P2): There are N refuelings required for one

aircraft to go from base A to base B, and the refueling occurs

in such a way that it is not instantaneous, but requires time

to offload from the tanker to the deployment aircraft. The N

refuelings will occur with one tanker from each of N refueling

bases. A visual interpretation of this problem is presented

in figure 1-2.

Problem (P3): This is the same problem represented in Problem

(P2) except we will now account for winds aloft in determining

the optimal route.

These three problems successively build upon one another, as

problem (P1) must be solved in order to solve problem (P2).

Likewise, the algorithm for problem (P2) lays the foundation

for the solution of problem (P3).

Literature Survey

The problems described above all involve finding a

solution to a nonlinear minimization problem with constraints

due to the fact that the optimization takes place on a sphere

(an oblate spheroid to be exact). The

2
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Figure 1-2. Graphical Representation of P2/P3
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previously stated problems are all an extension of a problem

solved by Yamani1 I. He solved the generic problem involving N

aircraft deploying with one refueling required. This paper

will use his solution to that problem and extend it to N

refuelings and show that this problem also converges to an

optimal solution. This problem, in its simplest form, can be

characterized as a location problem on a sphere.

Yamani's work utilizes other significant results to

achieve a solution. A similar problem is the spherical Weber

problem with maximum distance constraints; however, that

particular objective function is linear. Aly' showed that the

search for an optimal solution to the spherical Weber problem,

where demand points are not located entirely on a great

circle, is contained within a convex hull of the demand

points. Drezner 5 proved if the demand points lie on a great

circle, the optimal solution also lies on this great circle.

Katz and Cooper 7 showed the sufficient conditions under which

a demand point is a local minimum.

Some work has also been accomplished on the Weber problem

without constraints. Aly and Litwhiler 8 solved this problem

using two different methods: the Map Projection Algorithm and

Cyclic Search Algorithm. Ayken 2 derived the Cyclic Meridian

Parallel Search and Geodesic Descent Algorithm to solve the

Weber problem without constraints. All these algorithms

5



converge to local optima as long as the search is limited to a

spherical radius of n/4. Additionally, it should be noted

that the optimal point may not be unique.

Some researchers have looked at how to solve the problem

with constraints. Love 9 developed a process that handled

constraints through use of convexity and penalty functions.

Ayken2 found a solution to the Weber problem with distant

constraints given that the solution is within a certain

distance of previously known points.

Finally, Darnell and Loflin3' 4 used linear programming to

solve a similar problem that utilized ground refueling, fixed

intermediate stops, and a return to the origin. Waite1 ° used

stochastic dynamic programming to solve a similar problem.

These problems had unrestricted but fixed refueling points

with different fuel costs.

Assumptions

Some assumptions need to be made in order to start the

solution process to these problems. These assumptions follow:

1. Aircraft will fly a great circle distance between any

solution points found. The algorithm will use a

version of the law of haversines to calculate this

distance. This calculation is a very good first order

calculation of the actual distance on the earth. This

will be accomplished by the dists function in the

6



Matlog toolbox. This takes the earth's bulge into

account when performing calculations. The haversine

calculation follows 12 :

R = earth's radius (3,958.75 mi)

Alat = lat2 - latl

Along = long2 - longl

a = sin 2 (Alat/2) + cos(latl) x cos(lat2) x sin 2 (Along/2)

c = 2 x a tan 2(,/a, •fi _ a))

d = Rxc

2. Weather at altitude is assumed to be negligible except

in Problem (P3).

3. All deploying aircraft are of the same model.

Similarly, the refueling aircraft are all assumed to

be of the same model. In the particular algorithm

being developed, the deploying aircraft is a C-5 and

the refueling aircraft is a KC-10. If a requirement

arises to analyze different types of aircraft beyond

these, all that would be required is to change the

fuel consumption functions introduced in chapter II.

4. For the non-instantaneous problems (P2) and (P3),

aircraft fuel consumption will be a constant during

refueling segments due to the fact gross weight will

be changing negatively due to fuel consumption AND

also changing positively due to refueling.

7



5. Takeoff and landing fuel consumption as well as

position where these events occur will be input by the

user and treated as constants.

6. Cargo weight must meet aircraft gross weight

requirements also taking into account the fuel weight.

7. All aircraft will operate at a 99% maximum specific

fuel rate, as this will ensure maximum speed while

being only 1% less than the best fuel efficiency.

8. Aircraft are assumed to require a safety stock of

fuel. This requirement affects range calculations,

making the aircraft's effective range decrease. (due

to the fact the safety stock fuel cannot be used for

travel planning, but only for emergencies)

8



CHAPTER II

FUEL CONSUMPTION FUNCTION

Fuel Consumption Rate Function

In this chapter, we derive formulas for fuel consumption

and aircraft range based on cargo weight (w0 ), initial fuel (go

for deploying aircraft/ho for refueling aircraft), and flight

altitude (alt). Yamani 1 1 derived these equations in the same

manner with one notable difference. His equations depended

solely on the gross weight of the aircraft. The following

equations also incorporate flight altitude, as that was also

deemed a significant factor in the model after performing the

regression analysis.

The data is based on information in technical order IC-

5A-l-1 15 for the deploying aircraft and the KC-10A performance

manual14 for the refueling aircraft. Figure 2-1 shows an

example specific range chart for the KC-10A at an altitude of

29,000 feet. These range charts exist for various altitudes.

It is necessary to model the fuel consumption rate information

contained in these charts by means of a mathematical formula.

9



In order to do that, we will assume the aircraft operates at

the 99% specific range since this maximizes velocity and is

near optimal in fuel consumption.

Let

MPF(GW, Alt) the distance traveled in miles per 1,000

lbs of fuel burned given the aircraft

gross weight, GW, and the flight altitude,

Alt

Tables 2-1, 2-2, 2-3, 2-4, and 2-5 show fit, ANOVA, estimates,

and effects tests based on the data from the C-5. A second

degree polynomial model is used. We can see this gives an

adjusted R 2of over .99 which gives a sufficiently accurate

representation of the data. Figure 2-2 shows a plot of the

residuals of the data. We can see that the mean of the

residuals is around zero and appear to be random which

indicates a good model for our data. The KC-10 fuel

consumption rate model also has an adjusted R 2over .99 and is

derived similarly. Figures 2-4 and 2-5 are plots of the

actual versus predicted MPF(GW,Alt) against various altitudes

and gross weights for the C-5 data. Notice in figure 2-4, the

x-axis has four data points for every altitude. The four data

points associated with each altitude are taken at

progressively heavier gross weights. Thus, that is the reason



altitude. However, you will notice the general trend is an

increase in altitude corresponds to a decrease in fuel

consumption rate. In figure 2-5, you will notice the x-axis

has multiple repeating entries for different gross weights.

This is due to the fact that the data points taken at these

particular gross weights are taken at different altitudes.

The general trend is for the fuel consumption rate to decrease

as gross weight increases. The computed models of MPF(GW,

Alt) for the C-5 and KC-10 follow: (note that Alt 2 did not

turn out to be a significant factor for the C-5)

MPFc-5 (GW, Alt)

0.27678e-1+0.70599e-6 x Alt-0.42783e-7 x GW

-0.65146e-12 x Alt x GW+0.29811e-13 x GW2

MPFKc-10 (GW, Alt)

-0.2976658738e - 1 + 0.4268994944e - 5 x Alt + 0.1481265454e - 7 x GW

-0.4203287222e - 11 x Alt x GW - 0.3626383552e - 10 x Alt 2

.:-0. 6426861944e - 13 x GW2

11
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Table 2-1. C-5 Summary of Fit

RSquare 0.993319
RSquare Adj 0.992795

Root Mean Square Error 0.000555
Mean of Response 0.022731

Observations (or Sum Wgts) 56

Table 2-2 C-5 Analysis of Variance
Source DF Sum of Mean Square F Ratio

Squares
Model 4 0.00233780 0.000584 1895.56
Error 51 0.00001572 3.083e-7 Prob > F

C. Total 55 0.00235352 <.0001

Table 2-3 C-5 Parameter Estimates
Term Estimate Std Error t Ratio Prob>ItI

Intercept 0.0273714 0.000369 74.19 <.0001
Alt 3.5885e-7 6.63e-9 54.12 <.0001

GW -2.632e-8 4.98e-10 -52.83 <.0001
(Alt-23500)*(GW-532857) -6.51e-13 4.33e-14 -15.03 <.0001

(GW-532857) 2  2.981e-14 3.66e-15 8.14 <.0001

Table 2-4 C-5 Effect Tests
Source Nparm DF Sum of F Ratio Prob > F

Squares
Alt 1 1 0.00090313 2929.133 <.0001

GW 1 1 0.00086051 2790.931 <.0001
Alt*GW 1 1 0.00006969 226.0199 <.0001

GW2  1 1 0.00002042 66.2187 1 <.0001

13
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Tables 2-5, 2-6, 2-7, and 2-8 show the regression analysis for

the KC-10 fuel flow function.

Table 2-5. KC-10 Summary of Fit

RSquare 0.997985
RSquare Adj 0.997527

Root Mean Square Error 0.000431
Mean of Response 0.036367

Observations (or Sum Wgts) 28

Table 2-6 KC-10 Analysis of Variance
Source DF Sum of Mean Square F Ratio

Squares
Model 5 0.00202623 0.000405 2179.398
Error 22 0.00000409 1.859e-7 Prob > F

C. Total 27 0.00203033 1 <.0001

Table 2-7 KC-10 Parameter Estimates
Term Estimate Std Error t Ratio Prob>ItI

Intercept 0.059863 0.001224 48.90 <.0001
Alt 1.9332e-7 2.741e-8 7.05 <.0001
GW -8.529e-8 1.034e-9 -82.51 <.0001

(Alt-35,000)*(GW-365,714) -4.2e-12 3.17e-13 -13.24 <.0001
(Alt-35,000) 2  -3.63e-11 6.49e-12 -5.59 <.0001
(GW-365,714) 2  6.427e-14 8.98e-15 7.15 <.0001

Table 2-8 KC-10 Effect Tests
Source Nparm DF Sum of F Ratio Prob > F

Squares
Alt 1 1 0.00000925 49.7555 <.0001
GW 1 1 0.00126590 6807.964 <.0001

Alt*GW 1 1 0.00003260 175.2967 <.0001
Alt 2  1 1 0.00000581 31.2693 <.0001
GW2  1 1 0.00000952 51.1864 <.0001

16



Aircraft Range Function

It is important to know the distance, d, an aircraft can

fly given its initial fuel (go), flight altitude (alt), and

cargo weight (w0) . First, let us consider the initial gross

weight (GW) of the aircraft.

GW = EW + go + w0 (note that this formulation only holds

true if the aircraft has not used any fuel yet)

where EW is the empty weight of the aircraft. During flight,

GW = EW + f + w0

where f is the amount of fuel left. one can easily see that

EW and wo do not change. Therefore,

aGW = af

Let

Rj (go, wo, al t) = the range of aircraft j given an initial

fuel, cargo weight, and flight altitude

Now, we can surmise that an optimal solution will occur only

if the deploying aircraft finishes with little or no fuel.

Therefore, the ending gross weight is,

Final GW = EW + wo (as f = 0)

We can now integrate the MPF(GW, Alt) function we found

earlier for each aircraft and find its range function:

EW+wo+go

R(go, wo, al1t) f MPF(GW)dGW
EW+wo

17



go

= JMPF(EW + wo + f)df
0

We get the following:

Rc- 5 (go, wo, al t):

0.9937160432e - 14 x go' - 0.2139143481e - 7 x go2

-0.3257322132e - 12 x go2 x Alt + 0.2981148130e - 13 x g02 x EW

+0.2981148130e - 13 x go2 x wo + 0.2767819883e - 1 x go

+0.7059890563e - 6 x Alt x go - 0.4278286962e - 7 x EW x go

-0.4278286962e - 7 x wo x go - 0.6514644265e - 12 x go x Alt x EW

-0.6514644265e - 12 x go x Alt x wo + 0.2981148130e - 13 x go x EW2

+0.5962296260e - 13 x go x EW x wo + 0.2981148130e - 13 x go x wo2

RKC-1O (ho, yo, alt):

0.2142287315e - 13 x ho3 - 0.2101643611e - 11 x ho2 x Alt

+0.7406327270e - 8 x ho2 + 0.6426861945e - 13 x ho2 x EW

+0.6426861945e - 13 x ho2 x yo - 0.2976658738e - 1 x ho

+0.4268994944e - 5 x Alt x ho + 0.1481265453e - 7 x EW x ho

+0.1481265453e - 7 x yo x ho + 0.6426861944e - 13 x ho x EW2

+0.1285372389e - 12 x ho x EW x yo + 0.6426861944e - 13 x ho x yo2

-0.4203287222e - 11 x ho x Alt x EW - 0.4203287222e - 11 x ho x Alt x yo

-0.3626383552e - 10 x ho x Alt 2

Fuel Consumption Function

It is also helpful to know Fj(go, wo, alt, d), the amount

of fuel consumed when an aircraft flies a given distance, d,

with an initial fuel, go/ho, flight altitude, alt, and cargo

weight wo/yo. In order to find this value, we must also know

how much fuel is left in the aircraft after completion of the

leg. We will denote this value as gj/hj. Now,

Fj(go, wo, alt, d) = go -gi

18



Since we know go, we must only find g, in order to find Fj (go,

wo, alt, d). We do this through the following equation,

go

d f gMPF(EW + wo + f)df
go

19



Doing this, we get the following:

Fc-5(go, wo, alt, d) :

go + (-141131967 x Alt x wo + 0.3950720052e19

-141131967 x Alt x EW - 0.2053949494e13 x EW

-0.2053949494e13 x wo + 0.1449491222e15 x Alt

+sqrt(O.8215797968e33 x d + 0.5797558638e21 x Alt x go2

+0.8437417038e25 x EW x go + 0.8437417038e25 x wo x go
+0 1145306807e34 x Alt + 0.1159511729e22 x Alt x wo x EW

+0.3983646422e17 x Alt 2 x EW x go + 0.2101024802e29 x Alt 2

+0.5645278680e29 x Alt x d + 0.1991823211e17 x Alt 2 x go2

-0.4091390946e23 x Alt 2 x go - 0.1622915890e32 x EW

-0 1622915890e32 x wo + 0.1560818893e38

-0.1622915889e32 x go + 0.4218708516e25 x go2

+0.1159511728e22 x Alt x EW x go +

0.1159511728e22 x Alt x wo x go +

0.3983646422e17 x Alt 2 x wo x EW

-0.1710582136e28 x Alt x go - 0.1710582136e28 x Alt x EW

-0.1710582136e28 x Alt x wo + 0.3983646422e17 x Alt 2 x wo x go

+0.1991823211e17 x Alt 2 x wo2 + 0.5797558643e21 x Alt x wo2

-0.4091390946e23 x Alt2 x wo + 0.1991823211e17 x Alt2 x EW2

+0.5797558643e21 x Alt x EW2 - 0.4091390946e23 x Alt2 x EW

+0.4218708522e25 x EW2 + 0.8437417044e25 x EW x wo
+0.4218708522e25 x wo2 )) (0.2053949492e13 + 141131967 x Alt)

20



FKc-lo (ho, yo, alt, d):

ho + (0.8539003945e16 - 0.1499862837e14 x Alt

-0.6936177892e12 x EW - 0.6936177892e12 x yo

+38507457.01 x Alt x EW + 38507457.01 x Alt x yo

-0.7812500000e - 2 x sqrt(-0.1750430987e25 x EW x Alt x ho

-0.1750430987e25 x yo x Alt x ho - 0.4196707428e34 x Alt

+0.1576486953e29 x EW x ho + 0.1576486953e29 x yo x ho

+0.3516704614e30 x Alt x ho + 0.3516704613e30 x Alt x EW

+0.3516704613e30 x Alt x yo - 0.1775661541e36 x d

-0.1940784755e33 x EW - 0.1940784755e33 x yo

-0.1940784756e33 x ho + 0.7882434769e28 x ho2

-0.8752154935e24 x Alt x ho2 + 0.1194632616e37

+0.4858918487e20 x Alt 2 x EW x yo - 0.1750430987e25 x EW x Alt x yo

+0.4858918486e20 x yo x Alt 2 x ho + 0.4858918486e20 x EW x Alt 2 x ho

+0.3685725846e31 x Alt2 - 0.1892545453e26 x Alt2 x EW

-0.1892545453e26 x Alt2 x yo + 0.7882434765e28 x EW2

+0.1576486953e29 x EW x yo - 0.8752154935e24 x Alt x EW2

+0.7882434765e28 x y02 - 0.8752154935e24 x Alt x yo'

+0.2429459243e20 x Alt2 x EW2 + 0.2429459243e20 x Alt2 x yo,

+0.2429459242e20 x Alt2 x ho0 + 0.9857908992e31 x Alt x d

-0.1892545452e26 x Alt2 x ho)) + (-0.6936177894e12 + 38507457 x Alt)

The above equations are based on the quadratic model with no

two way interactions considered of the fuel consumption rate

equation. The adjusted R2 was about .989 and .985 for the KC-

10 and C-5 models, respectively.

From the research performed by Yamani, we know the fuel

consumption function is a concave and increasing function of

the distance1 . Additionally, the fuel consumption function is

a convex and increasing function of w0
11
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Fuel Requirement Function

The last function of interest is the fuel requirement

function, FRj (wo, alt, d). This function represents the exact

amount of fuel required to fly a distance, d, at flight

altitude, alt, and cargo weight, wo. We know the initial

amount of fuel, go/ho must be greater than or equal to the fuel

required (otherwise the aircraft would run out of fuel). So,

set

Rj(go,wo,alt) = d

and solve for go to get the fuel required. We get:
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FRc-5 (wo, alt, d):

(-0.2053949494e13 x wO + 0.3950720052e19

+0.1449491222e15 x Alt - 0.2053949494e13 x EW

-141131967.0 x Alt x EW - 141131967.0 x Alt x wo

+sqrt(O.1145306807e34 x Alt - 0.1622915890e32 x EW

-0.1622915890e32 x wo + 0.4218708522e25 x wo2

+0.8437417044e25 x wo x EW + 0.5797558643e21 x Alt x wo2

+0.2101024802e29 x Alt 2 - 0.4091390946e23 x Alt 2 x EW

-0.4091390946e23 x Alt2 x wo + 0.4218708522e25 x EW2

+0.5797558643e21 x Alt x EW2 + 0.1991823211e17 x Alt2 x EW2

+0.1991823211e17 x Alt 2 x wo 2 + 0.3983646422e17 x Alt 2 x EW x wo

+0.1159511729e22 x wo x Alt x EW + 0.1560818893e38

-0.1710582136e28 x Alt x EW - 0.1710582136e28 x Alt x wo

-0.8215797968e33 x d

-0.5645278680e29 x d x Alt)) + (0.2053949492e13 + 141131967 x Alt)

23



FRKc-10(yo, alt, d):

(-0.8878307702e14 x yo + 0.1092992505e19 - 0.1919824431e16 x Alt

-0.8878307702e14 x EW + 4928954497 x Alt x EW

+4928954497 x Alt x yo - xsqrt(O.1576486953e29 x yo x EW

-0.8752154934e24 x Alt x yo2 + 0.3685725846e31 x Alt 2

-0.1892545453e26 x Alt2 x EW - 0.1892545453e26 x Alt2 x yo

+0.7882434764e28 x EW2 - 0.8752154934e24 x Alt x EW2

+0.2429459243e20 x Alt2 x EW2 + 0.2429459243e20 * Alt2 x yo2

+0.1194632616e37 + 0.4858918487e20 x Alt 2 x EW x yo

-0.1750430987e25 x yo x Alt x EW - 0.4196707428e34 x Alt

+0.3516704613e30 x Alt x yo + 0.3516704613e30 x Alt x EW

-0.1940784755e33 x EW - 0.1940784755e33 x yo + 0.7882434764e28 x yo2

+0.1775661541e36 x d - 0.9857908994e31 x d x Alt)) +

(-0.8878307703e14 + 4928954497 x Alt)
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CHAPTER III

PROBLEM (P1)-MODEL AND SOLUTION

1 Aircraft

N Aerial Refuelings

(N+1 legs)

Instantaneous Refueling

Problem Description

This problem is an extension of a problem solved by

Yamani 11 . He considered and solved the problem for one aerial

refueling with the assumption that refueling is instantaneous.

Consider the case where there is one aircraft that is to be

deployed from base A to base B. However, the distance, d,

from base A to base B is greater than the range, Rdeploy(go, WO,

alt), of the deploying aircraft. Therefore, 1 or more aerial

refuelings must be accomplished. The tanker aircraft would

come from predetermined air bases and refuel the deploying

aircraft in midair enroute to base B. At the end of each

refueling, the tanker aircraft would return to its origin

base. The objective in this case would be to determine the N

25



refueling points that minimize total fuel consumption of both

the deploying aircraft and the N tanker aircraft used.

Additionally, we shall determine how much fuel is added to the

deploying aircraft at each refueling point. Let

Di= the distance of leg i of the deployment

(for example, the distance from the origin

base to the first refueling point would be

D, and the distance from refueling point 1

to refueling point 2 would be D2 , etc.)

T= the distance from aerial refueling base i

to aerial refueling point i

Rj(go, wo, alt) = the range of aircraft j given its initial

fuel, cargo weight, and planned flight

altitude (j = tanker or deploying

aircraft)

Fmiax(Wo, j) = the maximum fuel aircraft j can carry

given its cargo weight (j = tanker or

deploying aircraft)

Wmax(j) = the maximum gross weight for aircraft j (j

= tanker or deploying aircraft)

F (go, wo, alt, d) = amount of fuel used to fly a distance d

given an initial fuel amount, cargo

weight, w0 , and altitude by aircraft j (j

= tanker or deploying aircraft)
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S = amount of fuel consumed by the deploying

aircraft on leg i

i

Fdeploy(go + > (xj- -- - ), wo, Di alt)
j=1

xi = amount of fuel transferred from the tanker

to the deploying aircraft at refueling

point i

ri = amount of fuel used by tanker aircraft i

to fly from its home base to the refueling

point

FRtanker (hoyo, T ,alt)

s= amount of fuel used by tanker aircraft i

to fly from its refueling point back to

its home base

Ftanker (ho-xi-ri1 ,yo, Tfalt)

Wo= cargo weight of deploying aircraft

Yoi = cargo weight of tanker aircraft i

go = initial fuel of deploying aircraft

hoi= initial fuel of tanker aircraft i

Several constraints must be satisfied in determining the

N optimal refueling points. First, the distance of each leg

cannot exceed the maximum range of the deploying aircraft.

i

Dm! Rdpioy(go + L (•_• - fj_), wo, alt)
j=I
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Second, the tanker aircraft must be able to reach the

refueling point and then have enough fuel to return back to

its original base. This algorithm will assume that getting to

the aerial refueling point is not a problem for the tanker,

however, the algorithm checks to make sure that there the

aerial refueling aircraft has enough range to make the trip

back to its home base from the aerial refueling point.

T" < R tan ker (hoi - xi - Ftanker (hoi, yoi, Ti), yoi, alt)

Similarly, the amount of fuel consumed by both the tanker and

deploying aircraft for each leg must be less than either its

maximum fuel given its cargo weight, or for leg 1, less than

its initial fuel, go or ho:

Fdeploy(go, wo, alt, Di, alt) • go

i i
Fdep-oy(go + j (x- - ,), wo, Di, alt) < go + L xj - f _

j=1 j=1

Ftan keho, yo, Ti, alt) <_ ho,

F tan ker(hoi - xi - r, yo, Ti, alt) < ho, - xi - ri

Additionally, the aircraft must meet its weight requirements

at each leg, i. Thus:

Wm x(deploy) Žgo+ wo+ L(xX_ -I9 f -I
j=1

W max(tanker) > hoi + yoi
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Finally, it should be noted that the tanker aircraft must also

be able to offload the necessary fuel to the deploying

aircraft, while also being able to reach its final

destination.

Formulation of (P1)

The problem can be stated mathematically as follows: find

the N coordinates (latitude, longitude) and amount of fuel

transferred from the tanker to the deploying aircraft at each

refueling point that will

N

(PI) Minimize fi + ri + si
i=2
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S. t.

Fdeploy(go + L(Xi - fj,), wo, Di alt) • go + x -f

j=i j=1

fi

"F tan ker('hOi, yo, Ti, alt) •! hoi

"F tan ker(h20 - Xi- ri, YO, Ti, alt): • ho, - xi - r

Ti •ý R tan ker('hOi, yoi, alt)

T1 • R tan ker( 7?oi - xi- F tan ker(hO,, yoi, T), yoi, alt)

W max (deploy) Žgo + wo + L (xi- - f-
j=1

W max(tanker) Žhoi + yoi

Note: the tankers are all assumed to be the same model, and

thus, have the same weight characteristics and limitations.
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Solution Procedure for Problem (P1)

1. Pick N initial feasible points. (discussion of how to

pick these points is at the end of the chapter)

2. Calculate the fuel cost involved with using these N

initial feasible points.

3. Set an N length vector, A (step length), a minimum A, a

tolerance (TOL), and let i=1.

4. Fix all N points except for point i. Create four 'new'

points by moving point i north, south, west, and east by Ai.

a. Calculate the fuel cost of each of the four

'new' points and check feasibility.

1. If the 'new' point is not feasible, the

fuel cost associated with that point is

infinity.

b. Compare the smallest fuel cost of the four

'new' points to the 'old' fuel cost. If 'new'

fuel cost < fuel cost, set point i to the point

corresponding to the 'new' fuel cost and fuel

cost is now equal to 'new' fuel cost. Set

difference = fuel cost - 'new' fuel cost.

1. Else, set Aj= Aj/2.

5. Check the vector A against the minimum A requirement

and difference against the user defined tolerance
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movement. If difference < TOL & max (A) < (user

defined min A), the algorithm is complete. If not,

continue.

6. Increment i unless i=N, then set i=1 again.

7. Go to step 4.

Yamani 11 , using the fact that the distance from a given point r

is an s-convex function within a circle of radius H/2 and

center r (Drezner and Weslowsky6 ) and the search for an

optimal solution to the spherical Weber problem can be

restricted to the spherical convex hull of the demand points

(Aly1 ), showed that we can limit our search for refueling

points to the convex hull of the endpoints of each leg i,

along with the associated aerial refueling base point.

Yamani 11 also showed that the objective function is s-convex.

The multiple aerial refueling problem is clearly just an

extension of the single refueling station problem. We can

apply the same procedure if we temporarily fix the points

before and after the refueling point of interest. Since the

objective function is s-convex, we know that if we move in a

direction that improves the objective function, we are moving

toward the optimal position. When it is no longer possible to

improve the objective function in any direction and/or step

length, optimality is reached.
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Obtaining an Initial Feasible Solution

1. Let j=1 and start with the origin base, (xj-1 , _Yj-i)

and first aerial refueling base, (ARxj,ARyj).

2. Let the jtth refueling point be (zj, w9) = ((xj-l+ARxj)/2,

(yj-1 +ARyj)/2) for all j initially. (Note that since this

is on a sphere, these interpolated points are not

midpoints. This does not matter for our purposes here.)

3. Check feasibility of the new found point.

a. If point j is too far from the aerial refueling base

(range of tanker, Rtanker(ho, Yo, alt), is less than

the distance from the aerial refueling base to the

refueling point), move point j incrementally closer

to the aerial refueling base; ((9*zj + ARxs)/10,

(9*wj + ARyj)/1O).

b. If point j is out of range of the deploying aircraft

(Rdeploy(go, wo, alt)), move point j incrementally

closer to the previous refueling point or origin;

((xj-3 +9*zj) /10, (Yj-1 + 9*wj)/1O).

c. If point j is out of range of the next refueling

point (or destination if j=N), move point j closer

to the next refueling point;

((Xj+1+ 9 *zj) /lO, (yj+I + 9*w)/10).

4. If all points are feasible, you are complete. If not,

let j=j+l or if j=N, set j=1.

33



Convergence Proof for N>l Aerial Refuelings

We need to show that at each and every successive

iteration, the total fuel consumption for both deployment and

refueling aircraft is less than or equal to the previously

calculated total fuel consumption. Yamani showed this is true

for N=1. Assume that we know the optimal solution of

refueling points, call this set S and it takes k iterations to

achieve. Now, also assume that at some iteration, i<k, the

calculated total fuel consumption increases (diverges).

Remember, the algorithm moves one refueling point at a time,

and fixes all other points. Let S' be the solution set

associated with the i-I iteration. According to the above

algorithm, if that were the case, we would not change S' due

to the fuel cost increasing, and we would divide Aj for point

j by 2 and perform the next iteration. Assume the total fuel

consumption keeps diverging for point j. Eventually Aj would

be sufficiently close to zero and the 'new' points created by

moving a distance Aj would be the same as the point in the

current solution set S'. Then S'(j)=S(j) and this point is in

the optimal solution set for point j. This same concept can

be shown to be true for all points of j from 1 to N.

Therefore, the objective function never increases from one

iteration to the next, and if it reaches a point where it

never again decreases, we have found the optimum. The worst
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that could happen is the objective function maintains the same

value. Therefore, since Yamani 1' showed the fuel consumption

functions are s-convex, we know via Drezner and Wesolowsky 6

that the procedure converges to a global optimum solution.
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CHAPTER IV

PROBLEM (P2)-MODEL AND SOLUTION

1 Aircraft

N Aerial Refuelings

(N+1 legs)

Non-Instantaneous Refueling

Problem Description

This problem is the exact same one described in the last

chapter except for the fact that refueling is assumed to

consist of a start point and end point, instead of being an

instantaneous procedure. Therefore, this will mean that a

deployment will consist of 2N+1 legs. This chapter will

introduce a heuristic that will obtain a 'near' optimal

solution to the problem.

The mathematical formulation and solution procedure (at

least the start of it) of this problem is the same as Problem

(PI).
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Solution Procedure for Problem (P2)

1. Solve Problem (P2) using Problem (P1) method. This gives

you N instantaneous optimal refueling points. We will

call these (xi, Yi) i=1. .N. Let i=O.

2. Calculate the fuel remaining in the object aircraft at

point i using F (go, wo, alt, d).

3. Calculate FRdeploy(WO, alt, Di+,). Once we have (2) and (3),

we know how much fuel we must offload from the tanker,

xi+i, in order to make the next refueling point by

calculating how much fuel we have left at point i,

Fdeploy(go, wo, alt, Di), and also using FRdeploy(Wo, alt,

Di+,), the fuel required to go from point i to point i+1.

The user will provide the program with an offload rate, a,

and a speed, P, can be calculated using regression based

on aircraft altitude and weight.

4. For the purposes of the refueling legs, fuel consumption,

y, will be assumed to be constant on just those legs.

This is due to the fact that the fuel consumption

functions will not accurately predict fuel usage when the

weight of the aircraft is increasing in the middle of

flight (due to aerial refueling).

5. Once we have obtained (4) and also have a constant fuel

consumption rate, y, we can calculate the refueling
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distance leg length. For each point i, we have a

refueling distance,

qi = FR(wo, Di + i, al t) + a

Note: it is imperative when making these calculations that

you make sure your units match.

6. Next, we calculate 10 different refueling segments for

segment i and pick the best one in terms of fuel

consumption. (Note: the number of refueling segments may

change as I continue performing sensitivity analyses to

determine the number that maximizes performance and

efficiency of the algorithm.)

a. Bearing Calculation from point i+1 to point i:

Vlon = ion (i + 1) - ion (i)

Vlat = lat (i + 1) - lat (i)

Br = a tan 2(sin(Vlon) x cos(lat (i + 1),

cos(lat (i) x sin(iat (i + 1)

-sin(lat (i) x cos(iat (i + 1) x cos(Vlon))

b. Calculation of a point given a bearing, Br, and

distance, d, from another point (use the

instantaneous refueling point):

latl = a sin(sin(lat) * cos(d) + c os(lat) * sin(d) * cos(Br));

lonl = ion + a tan 2( (sin(Br) * sin(d) * cos(lat)) ,

cos(d) - (sin(lat) * sin(latl)) ;

This point is the beginning of the refueling segment.

Calculate this point for ki = (qi/lO)*p where p = 1 to

10.
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7. Since we have found the beginning refueling point,

we must now find the end refueling point for each

refueling segment. Let A be the instantaneous refueling

point (xij, yij). Let B be the next instantaneous

refueling point (xi+1 , y+,i). Let D be the beginning

refueling point, (a,b). Now, given a great circle route

AB and a point D, we can find the points on AB that lie a

distance qj from D. This will give us the ending

refueling point 13 .

a. M=bearing (AD) -bearing (AB)

L=dist (AD)

r=Vcos2 (L) + sin2 (L) * cos 2 (M)

p = atan2 (sin (L) *cos (M) , cos (L))

dp = p +- acos (cos (qj) /r)

Repeat this for all D = ki and call this
solution point kki.

8. Now, check all 10 possible solutions for beginning and

ending refueling point i, and pick the segment that

minimizes fuel consumption and also meets range function

feasibility for both tanker and deployment aircraft.

Increment i and return to step 2. If i=N, go to step 10.

9. Set i=1. In the same way as Problem (P1), move the

beginning and ending refueling points for each i a fixed

step length, A1 , to the north, east, south, and west.
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10. If we can move the beginning and ending refuel points and

achieve a smaller fuel cost, the associated points are the

new beginning and ending refuel points for step i.

Otherwise, A1 = Ai1/2.

11. Increment i or if i=N, set i=1 and goto step 10. Stop the

procedure when all Ai are sufficiently small AND the

difference between fuel costs are negligible.

12. Repeat steps 6-8 again, checking if the angle of the

refueling segment improves fuel performance.
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CHAPTER V

PROBLEM (P3)-MODEL AND SOLUTION

1 Aircraft

N Aerial Refuelings

Non-Instantaneous Refueling

Winds Aloft Factored into Fuel Cost Calculations

Problem Description

Suppose we have an aircraft that needs to be deployed

from base A to base B and the distance between the two bases

is greater than the range of the aircraft. Thus, 1 or more

aerial refuelings are required. There are predetermined

refueling bases from which refueling aircraft takeoff and land

to support these deploying aircraft en route to the

destination. In the real world, we must also account for

winds when flying our aircraft. A significant headwind causes

an aircraft to use more fuel than no wind or even, a tailwind.

The problem then is: where do the optimal refueling points

occur when correcting for forecast winds?
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Solution Procedure

The procedure mimics the problem (P2) solution with one

notable exception: the actual calculation of the fuel cost.

Everything else remains the same.

Calculation of Fuel Cost

In problem (P2), we calculated fuel cost from the

equations derived in Chapter 2. We will still use these

equations to correct for wind, but we must modify the distance

traveled in order to compute the fuel cost.

1. Obtain a feasible solution in the same way as before.

This will give us an origin, destination, and

refueling points in between.

2. Once we have these points, we will need to calculate

the bearing from the origin to refueling point 1.

3. Obtain the aircraft speed. We can perform a

regression on charts like those shown in figure 2-1

in order to obtain a mathematical formula which gives

us aircraft speed at the 99% max range given aircraft

weight and altitude.

4. Obtain a vector of wind velocity, v, and wind

direction, d, for all areas to be traveled through.

It is preferable if these are uniformly located. The

data that I used appear every 2.5 degrees north,

south, east, and west for the entire world. This
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basically made the earth a grid with a wind direction

and velocity every 2.5 degrees.

5. Take the first segment traveled, from the origin to

the first refueling point. Perform a mercator

projection on these points. With a mercator

projection, we can work in 2-dimensional space.

6. Find the equation of the line that runs through the

origin and first refueling point. With this

equation, we can find all points on the line from the

origin to the first refueling point that touch our

"wind grid'.

7. Solve the equation for the line for all points that

border on a grid line.

8. Convert all these points back to spherical

coordinates.

9. Now, we still have our original line segment from the

origin to the first refueling point, but it is broken

into a bunch of smaller pieces according to the 'wind

grid'. Take the first small segment from the

origin. The end of this piece hits either a

longitude or latitude multiple of 1.25n where n is

odd (assuming the wind vectors are every 2.5

degrees). Calculate the distance of this small

segment, t, and find the closest wind vector to it.
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10. Take the bearing (0) from the origin to refueling

point 1. This will not change while we are working

on the smaller segments. Take the calculated

aircraft speed, w, and get an aircraft velocity

vector:

X = w x sin((D)

Y = w x cos(D)

11. Calculate a wind vector:

X' = v x sin(d)

Y' = v x cos(d)

11. Calculate a new direction vector:

X'' = X - X'

y1, = y - y,

12. w' =2

13. The new distance is:

w
d' - x t

W1

14. Calculate the fuel used based on d' and then

calculate the 99% max aircraft speed.

15. Go to the next grid segment and keep repeating until

you hit refueling point 1.

16. Sum all d' and the fuel used on each grid segment

until refueling point 1. This is your fuel cost for

the first segment.
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17. Repeat this procedure for the next segment and keep

repeating until at the destination. (i.e. refueling

point 1 to refueling point 2) When you arrive at the

destination, go back to the origin and repeat the

process according to the algorithm in problem (P2).

Example Calculation

Origin = (W118, N36)

First Refueling Point = (W96, N49)
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Figure 5-1. Problem P3 Illustration

In figure 5-1, the vector arrows within each grid box are

the wind vectors associated that with particular portion of

the grid. Note: the empty grid boxes also have associated

wind vectors, but are not shown in Figure 5-1. The calculated

bearing from the origin to aerial refueling point 1 is 44.196

degrees. Next, find the 99% max range speed the aircraft

should travel at. For simplicity sake, we shall assume this

to be 300 mi/hr for the first grid box we traverse, box A

(although in the actual algorithm, one should compute the 99%

max range speed based on aircraft weight and altitude). Next,

convert the origin and aerial refueling point 1 into mercator

points and we get:
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Origin = [W118, N38.6331]

Point 1 = [W96, N56.368]

Next, use the equation of a line: y= mx+b. First, find m (the

slope):

m = (y'-y)/(x'-x)=(-118+96)/(38.6331-56.3688061)=.8061

Now, plug in either the origin or point 1 to find b:

b = y-mx = 38.6331 - (.8061*-118) = 133.7567

Now, the equation of any point on the mercator map from the

origin to point 1 is:

y = .8061x + 133.7567

We know we need to find the following points on the line:

x: [-116.25 -113.75 -111.25 -108.75 -106.25 -103.75

-101.25 -98.75 -96.251

y: [36.25 38.75 41.25 43.75 46.25 48.75]

Plug the above points into the equation we found earlier and

solve. Table 5-1 shows these points.
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Table 5-1. Example Mercator Grid Lines

Longitude Latitude

W118.0000 N38.6331 (origin)

W117.6161 N38.9426

W113.7064 N42.0944

W109.6572 N45.3585

W105.4500 N48.7501

W101.0632 N52.2865

W96.4715 N55.9879

W116.2500 N40.0439

W113.7500 N42.0592

W111.2500 N44.0745

W108.7500 N46.0899

W106.2500 N48.1052

W103.7500 N50.1205

W101.2500 N52.1358

W98.7500 N54.1512

W96.2500 N56.1665

W96.0000 N56.3680 (point 1)

Now, we must convert these points back to spherical

coordinates, and sort them from the closest to farther points

from the origin. These points are listed in table 5-2.
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Table 5-2. Example Spherical Grid Lines

Longitude Latitude

W118.00 N36.00 (origin)

W117.62 N36.25

W116.25 N37.13

W113.75 N38.72

113.71 N38.75

W111.25 N40.28

W109.66 N41.25

W108.75 N41.80

W106.25 N43.28

W105.45 N43.75

W103.75 N44.73

W101.25 N46.15

W101.06 N46.25

W98.75 N47.52

W96.47 N48.75

W96.25 N48.87

W96.00 N49.00 (point 1)

Now, assume the associated wind vector in box A is 35 mi/hr at

a direction of 120 degrees (0 degrees is due north). The

length of the segment in box A is simply the great circle

distance from the origin, (-118 36), to

(-117.62 36.25). This is 27.5 miles. The aircraft velocity

vector is:

x = 300*sin(44.196) = 209.13

y = 300*cos(44.196) = 215.09
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The wind velocity vector is:

x' = 35*sin(120) = 30.31

y' = 35*cos(120) = -17.50

Now, we would like to keep our original velocity vector, so

taking the wind vector into account, we get:

x'' = 209.13 + 30.31 = 239.44

y'' = 215.09 - 17.50 = 197.59

Next, compare the new magnitude, 4x'' 2+y'' 2 = 310.44, to our

original velocity magnitude, 300. Since 310.44>300, this

route with wind present is going to take less effort than

without the wind present. Thus, to account for the wind, we

take the ratio of the original velocity to the wind factored

velocity and apply this to the distance and get:

(300 + 310.44) x 27.5 = 26.57. Now, calculate the amount of fuel

used for a distance of 26.57 miles. Subtract this amount from

the original fuel allocation for the aircraft and then compute

the new 99% max range speed for the next grid box, B. Repeat

these steps to figure out the wind adjusted distance for grid

box B and then repeat for each successive grid box until

aerial refueling point 1 is reached. When aerial refueling

point 1 is reached, we will have a fuel cost for leg 1, and

then move onto the leg 2 and repeat all the aforementioned

steps. Repeat this procedure for all legs of the routing for

both tanker and deployment aircraft to get a total fuel cost.
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With the wind adjusted total fuel cost, one then just uses the

algorithm described in problem (P2) and keeps recomputing the

wind adjusted total fuel cost as aerial refueling points are

moved in conjunction with running that algorithm.
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CHAPTER VI

ANALYSIS OF THE ALGORITHM

1 Aircraft

N Aerial Refuelings

Non-Instantaneous Refueling

Comparison of Algorithm vs Current Planning Tools

Currently, the U.S. Air Force uses the Combined

Mating and Ranging Planning System (CMARPS) to plan aerial

refueling missions. For the most part, this tool directly

routes any deploying aircraft onto their great circle routes

(provided no restricted airspace is infringed upon during this

route), thus, minimizing the distance traveled by that

aircraft. It then places any needed aerial refuelings on this

great circle route according to refueler and abort base

availability. The algorithms derived in this paper use a

safety stock of fuel to deal with emergency situations rather

than specifically looking at distances to abort bases. Due to

this fact, we will also examine the effect on total fuel

consumption of using different amounts of safety stock at the
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end of this chapter. The U.S. Air Force has provided 3 sample

missions they planned using CMARPS. The U.S. Air Force

mission details are in Tables 6-1, 6-2, 6-3, and 6-4. In all

scenarios, the deployment aircraft is a C-5 and the aerial

refueling aircraft are KC-10's.

Table 6-1: Base Information.

Mission Origin Destination Aerial A/R Base A/R Base
Refuelings 1 2

1 N39.133 S31.933 2 N38.266 N13.583
W75.467 E115.966 W121.933 E144.933

2 N38.266 S31.933 2 N38.266 N13.583
W121.933 E115.966 W121.933 E144.933

3 N33.88 N9.516 2 N47.966 N63.983
W117.258 E44.083 W97.40 W22.60

Table 6-2: CMARPS Data Results.

Mission Offload Offload A/R Point A/R Point Total Fuel
#1 #2 1 2 Consumption

(lbs) (lbs) Beginning Beginning (lbs)
1 193,100 153,000 N50.233 N21.50 755,657

W122.60 E166.33

2 139,500 90,000 N32.66 N1.067 657,505
_ I W143.633 E166.483

3 214,700 193,500 N45.033 N66.366 597,576
W109.60 W13.033
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Table 6-3: CMARPS Fuel Consumption.

Mission C-5 Fuel KC-10 #1 Fuel KC-10 #2 Fuel
Consumption Consumption (lbs) Consumption (ibs)

(lbs)
1 563,252 72,683 119,722
2 445,799 106,261 105,445
3 496,432 61,085 40,059

Table 6-4. Mission Parameters

Mission C-5 C-5 KC-10 #1 KC-10 #2
Cargo Weight Initial Fuel Initial Fuel Initial Fuel

(lbs) (lbs) (lbs) (lbs)

1 100,000 267,150 310,000 330,000
2 100,000 267,150 260,000 260,000
3 190,000 114,150 330,000 280,000

Now, using the same input parameters given above, let us

examine the solution for each mission using the algorithm

derived in this paper. These results are shown in Tables 6-5

and 6-6.

Table 6-5: Algorithm Data Results.

Mission Offload Offload A/R Point A/R Point Total Fuel
#i #2 1 2 Consumption

(lbs) (lbs) Beginning Beginning (ibs)
1 188,010 135,129 N48.18 N14.74 656,971

W120.88 E147.19
2 92,089 127,057 N26.35 N11.71 618,679

W156.08 E146.04
3 232,597 186,851 N43.37 N65.64 595,236

W110.68 W21.35
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Table 6-6: Algorithm Fuel Consumption.

Mission C-5 KC-10 #1 KC-10 #2
Fuel Consumption Fuel Consumption Fuel Consumption

(lbs) (lbs) (lbs)
1 563,797 61,829 31,345
2 456,933 133,432 28,313
3 506,019 62,958 26,259

As one would expect, the fuel savings using the

algorithm described in this paper come from better placement

of the refueling aircraft (the KC-10's). The C-5 burns more

fuel using the described algorithm than CMARPS due to the fact

that it is not possible for the C-5 to take a shorter route

than the one prescribed by CMARPS.

Table 6-7 and Figure 6-1 show the affect of varying the

reserve fuel requirement on the first mission. As one would

expect, more fuel held in reserve drives the total fuel

consumption higher as this forces the tanker aircraft to

travel greater distances during the mission.

Table 6-7: Effect of Reserve Fuel on Fuel Consumption
(Mission 1).

Reserve Fuel Requirement (lbs) Total
Fuel Consumption (lbs)

35,000 657,626
50,000 663,649
55,000 672,739
60,000 689,626
70,000 718,387
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Figure 6-1: Reserve Fuel vs Safety Stock.

The overall performance of the algorithm holds up quite

well in these examples. In every case, it outperformed the

current method of mission planning. Table 6-8 shows the

actual comparisons via mission. On average, the algorithm

saved 6.96% in fuel consumption on a given mission.

Table 6-8: Comparison.

Mission Algorithm CMARPS Fuel Fuel Percentage of
Fuel Consumption savings Savings

Consumption (ibs) (lbs)
(lbs)

1656,971 755,657 98,686 13.06%
2 618,679 657,505 138,826 5.91%
3 1595,236 1597,576 2,341 1 0.39%
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Observation of an Additional Decision Variable

When running through the scenarios described above, it is

apparent that the 2 decisions variables are:

1. What point to refuel at?

2. How much to offload at that point?

However, if we look at the fuel used and offloaded by each KC-

10 above, we can come up with another decision variable that

could possibly save fuel and money:

3. How much fuel to initially have in each KC-10?

Looking at our results, it is clear that in all cases, we can

start with less fuel in the refueling aircraft. Let's assume

that 30,000 pounds is the reserve requirement for the KC-10's.

Therefore, the refueling aircraft must land with this amount

of fuel. Table 6-9 shows the excess fuel we are carrying for

each KC-10.
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Table 6-9: KC-10 Fuel Utilization.

Mission KC-10 Initial Fuel Fuel Fuel Left
Fuel Consumed Offloaded

1 1 310,000 61,829 188,010 60,161
2 330,000 31,345 135,129 163,525

2 1 260,000 133,432 92,089 34,479
2 260,000 28,313 127,057 104,630

3 1 330,000 62,958 232,597 34,445
2 280,000 26,259 186,851 66,890

Table 6-10: New Initial KC-10 Fuel Allocations.

Mission KC-10 Initial Fuel Excess New
Fuel Remaining Fuel Initial

1 1 310,000 60,161 30,161 277,050
2 330,000 163,525 133,525 195,800

2 1 260,000 34,479 4,479 254,400
2 260,000 104,630 74,630 185,000

3 1 330,000 34,445 4,445 325,500
2 280,000 66,890 36,890 241,900

Table 6-11 shows the results for each mission using the new

initial fuel for the KC-10's under the enhanced algorithm

column. This enhancement slightly increases efficiency and

boosts the fuel savings to 7.28% from the current system.

Table 6-11: Enhanced Algorithm Comparison.

Mission Algorithm CMARPS Fuel Enhanced Fuel Percentage
Fuel Consumption Algorithm Savings of Savings

Consumption (lbs) Fuel (lbs)
(lbs) Consumption

(lbs)
1 656,971 755,657 653,451 102,206 13.52%
2 618,679 657,505 617,130 40,375 6.14%
3 595,236 597,576 593,850 3,726 0.62%
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If we were to assume that a gallon of jet fuel costs the

U.S. government $1.50 per gallon and one gallon is 6.8 pounds,

the savings from using this algorithm on these three missions

alone would be over $32,274. Assuming that these missions are

a fraction of the daily workload for the Air Force, the

potential cost savings over a year could be substantial.
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CHAPTER VII

FUTURE RESEARCH

M Aircraft

N Aerial Refuelings

Non-Instantaneous Refueling

Future Research

Future research in this area should expand to include the

option of more than one deployment aircraft per mission. This

would allow fighter aircraft deployments to be optimized.

Additionally, we could solve the problem of deploying two

distinct types of aircraft, and thus two different fuel

consumption functions, deploying from base A to base B with

one or more aerial refuelings. Another possible problem to be

solved would be the case where there are aircraft at base A,

aircraft at base B, and they are both deploying to base C. En

route to base C, these aircraft will require aerial refueling

from predetermined refueling bases. This problem entails

finding a procedure that finds the near-optimal refueling

points with more than one source. Ultimately, one could solve

the mixture of the two aforementioned problems: finding
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optimal refueling points for different types of aircraft at

different bases deploying to the same base with predetermined

refueling bases to be utilized.

Finally, in order to add even more reality to the model,

I think it may be wise to incorporate flight restrictions into

the model. For example, the U.S. Air Force can not currently

plan flight routes through certain countries due to political

considerations (i.e. North Korea, Iran, etc.). However, a

minimal cost path may be found through these countries since

the aforementioned algorithms do not recognize political

boundaries. Therefore, to make the algorithm more useful, it

would make sense to be able to add flight restrictions.
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